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@ Epoch-level features: local characteristics of a single sleep epoch. The N2 Epoch Features Sequence Features Logits @ Capture these two types of features: Epoch-level features
stage includes mainly sleep spindles and K complexes. Lepoch | Lseq Lyoft | |Lhard and Sequence-level features.
@ Sequence-level features: transition rules between multiple sleep epochs. The =poch ';eatures Sequenc2Features Loglts A @ Calculate the Mean Squared Error and guide the student
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M2: How to bridge the gap between teacher and student model? Epoch Learning  Sequence Learning P & SHE . CNN and CNN+RNN structures.
@ The teacher network is often deep while the student network is shallow. .
@ Excessive gap leads to a difficulty for the student model to learn from the Results Conclusion
teacher model during the training process. @ We apply SleepKD on Sa- Method ISRUC-III Sleep-EDF Method ISRUC-III Sleep-EDF @® We first employ knowledge distillation on the multi-
Large Gap | _ Small Gap Small Gap lientSleepNet and Deep- Acc  Fl-Score  Acc  Fl-Score Acc  Fl-Score  Acc  Fl-Score level sleep stage classification model
O = KD 74.65 73.74 83.62 78.93 KD 80.22 74.54 81.28 64.41 ] .
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X 2 2 and Sleep-EDF datasets. TAKD 7727  76.19 8557  80.74 TAKD 8159 7646 8397  67.87 the epoch-level features and sequence-level features.
X The baseline comparisons DKD 7670 7373 8464  78.96 DKD 7988 7537 8388  67.78 .
are shown in the tables, SleepKD 79.66 7857  87.05  81.40 SleepKD 8329 7729  85.66  69.46 bridge the gap between teacher and student network.
SleepKD achieves the Table 2: The comparison of the knowledge distillation approaches Table 3: The comparison of the knowledge distillation approaches ‘ Sleep KD ac.hleves SOTA distillation p erformance
KD KD ——> KD SOTA results. applied on SalientSleepNet. applied on DeepSleepNet. Compared with other methods.
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